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Abstract

Background: Post-transcriptional regulation of gene expression by small RNAs and RNA binding proteins is of
fundamental importance in development of complex organisms, and dysregulation of regulatory RNAs can
influence onset, progression and potentially be target for treatment of many diseases. Post-transcriptional regulation
by small RNAs is mediated through partial complementary binding to messenger RNAs leaving nucleotide signatures
or motifs throughout the entire transcriptome. Computational methods for discovery and analysis of sequence motifs

in high-throughput mRNA expression profiling experiments are becoming increasingly important tools for the
identification of post-transcriptional regulatory motifs and the inference of the regulators and their targets.

Results: cWords is a method designed for regulatory motif discovery in differential case—control mRNA expression
datasets. We have improved the algorithms and statistical methods of cWords, resulting in at least a factor 100 speed
gain over the previous implementation. On a benchmark dataset of 19 microRNA (miRNA) perturbation experiments
cWords showed equal or better performance than two comparable methods, miReduce and Sylamer. We have
developed rigorous motif clustering and visualization that accompany the cWords analysis for more intuitive and
effective data interpretation. To demonstrate the versatility of cWords we show that it can also be used for
identification of potential siRNA off-target binding. Moreover, cWords analysis of an experiment profiling mRNAs
bound by Argonaute ribonucleoprotein particles discovered endogenous miRNA binding motifs.

Conclusions: cWords is an unbiased, flexible and easy-to-use tool designed for regulatory motif discovery in
differential case—control mRNA expression datasets. cWords is based on rigorous statistical methods that demonstrate
comparable or better performance than other existing methods. Rich visualization of results promotes intuitive and
efficient interpretation of data. cWords is available as a stand-alone Open Source program at Github https://github.
com/simras/cWords and as a web-service at: http://servers.binfku.dk/cwords/.
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Background

MicroRNAs (miRNAs) are endogenous small regulatory
RNAs of size approximately 22 nucleotides. miRNAs,
bound by the RNA induced silencing complex (RISC), re-
press gene and protein expression post-transcriptionally.
miRNA targeting and binding of complementary messen-
ger RNA (mRNA) sequences - often in the 3" untranslated
regions (UTRs) - generally leads to target mRNA degrad-
ation [1-3]. Perfect base-pairing between nucleotide 2 to 8
of the mature miRNA (the seed) and the mRNA target site
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plays an essential role [3], but cannot alone explain the full
regulatory potential of miRNAs [4].

The function of a miRNA in a given cellular context can
be studied experimentally by analyzing changes in mRNA
expression after miRNA inhibition [5,6] or overexpression
[1,2]. When interpreting data from such experiments it is
important to establish that the miRNA was successfully
and efficiently perturbed leading to change in expression
of target mRNAs. This can be achieved by showing differ-
ential regulation of the predicted target mRNAs [2] or by
showing seed site enrichment using unbiased 3"'UTR motif
analysis of differentially expressed genes [7-10]. An un-
biased motif analysis may have additional advantages as a
standard tool when analyzing miRNA perturbation experi-
ments. For example, miRNA target prediction methods
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may not detect non-canonical target motifs specific to the
perturbed miRNA, and systematic analysis of miRNA per-
turbation experiments has shown that in addition to
miRNA seed sites, other 3"'UTR motifs, some correspond-
ing to known binding sites of RNA binding proteins
(RNA-BPs), can also be predictive of the observed mRNA
expression changes [7]. There is therefore a need for com-
putational methods that allow for unbiased and systematic
analysis of mRNA sequence motifs in miRNA perturbation
experiments to confirm effective experimental perturbation
and to explore regulatory sequence elements other than
established miRNA binding sites.

Motif discovery has a long history in bioinformatics [11],
in particular for analysis of transcription factor binding
sites [12]. There are many different approaches to motif
discovery. Most use a fixed set of sequences and identify
motifs that are overrepresented in this set compared to a
Markov chain background model (Gibbs Sampler [13],
MEME [14], and Weeder [15]). Other methods do dis-
criminative analysis, where the goal is to identify motifs
that are over-represented in a positive set compared to a
negative or background set of sequences (DEME [16] and
[17]). However often we are dealing with transcriptome-
wide measurements of gene expression, and a priori it is
difficult to set a natural cut-off that defines the positive (or
negative) set.

Recently, methods for identifying correlations of word
occurrences in mRNA sequences and transcriptome-
wide changes in gene expression have been developed.
miReduce [8] and Sylamer [9] are two such methods
designed for unbiased analysis of miRNA regulation in
mRNA 3'UTR sequences (and for analyses of other types
of gene regulation). miReduce uses a stepwise linear re-
gression model to estimate the words that best explain the
observed gene expression changes. Sylamer computes
word enrichment based on a hyper-geometric test of word
occurrences in a ranked list of sequences. Sylamer is com-
putationally efficient and allows for bin-wise 3'UTR se-
quence composition bias correction.

Here we present cWords, a method for correlating word
enrichment in mRNA sequences and changes in mRNA ex-
pression. It permits for correction of sequence composition
bias for each individual sequence and is based on methods
developed in [7]. By development of robust and efficient
parametric statistics, cWords offers a factor 100 to 1000
speed gain over the previous permutation-based framework.
An exhaustive 7mer word analysis of a gene-expression
dataset can be completed in less than 10 minutes mainly
due to efficient approximations of statistical tests, and the
parallelized implementation that enables full utilization of
multicore computer resources.

cWords includes methods for clustering and visualization
of enriched words with similar sequences that can aid ex-
ploratory analysis of enriched words and degenerate motifs
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such as noncanonical miRNA binding sites and RNA-BP
binding sites. We show that cWords is effective for analyz-
ing miRNA binding and regulation in miRNA overex-
pression and inhibition experiments, and we demonstrate
how c¢Words can be used to identify enrichment of other
types of regulatory motifs in such experiments. We demon-
strate that miReduce, Sylamer, and cWords exhibit com-
parable performance on a panel of miRNA perturbation
experiments. Finally, we demonstrate how cWords can be
used to identify potential siRNA off-target binding and
regulation in RNAi experiments, and to discover endo-
genous miRNA binding sites in an experiment profiling
mRNAs bound by Argonaute ribonucleoprotein.

Results and discussion

We have developed an efficient enumerative motif discov-
ery method that can be used for extracting correlations of
differential expression and motif occurrences. In brief, se-
quences are ranked by fold change of expression, and mo-
tifs (words) are correlated with gene ranks. Unlike other
methods, cWords can detect subtle correlations of words
only present in few sequences due to sequence specific
background models. The rigorous statistical framework
allows for simultaneous analysis of multiple word lengths,
and words are clustered into motifs presented in plots
providing both overview and in-depth information
for interpretation.

The summary plots of cWords

cWords provides different summary visualizations to aid
in interpretation of a word correlation analysis. The en-
richment profile plot is a visualization of the cumulative
word enrichment (a running sum graph) across the sorted
list of gene sequences. This plot is similar to the plots of
Gene Set Enrichment Analysis [18] and Sylamer [9], and it
provides a detailed view of enrichment as function of gene
expression change for a specific word. Figure 1A shows an
example of an enrichment profile plot for the words most
significantly enriched in genes downregulated after miR-9
overexpression in HeLa cells [2].

The gene rank in the enrichment profile plot at which
the global maximum enrichment score is obtained is
termed the enrichment specificity (ES) index. A low ES
index is indicative of a specific enrichment signal corre-
sponding to enrichment of a motif in a small set of strongly
differentially expressed genes. Oppositely, a high ES index
reflects that the word enrichment was found for a larger
set of less differentially expressed genes. Words enriched in
sets of genes with a large intersection will tend to exhibit
similar enrichment profiles and have ES indices that are
numerically close. For example, variants of miRNA target
sequences (seed sites with 1 or 2 nucleotides offsets) tend
to have similar ES indices when analyzing miRNA overex-
pression experiments (Figure 1A).
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Figure 1 Enrichment of miR-9 seed sites in 3' end untranslated regions (3'UTRs). (A) Enrichment profile for the top ten enriched words in
3'UTRs after miR-9 transfection. Each line represents the running sum over all scores that quantify degree of enrichment according to gene
downregulation (from most downregulated to most upregulated). miR-9 seed sites (7mer-m8 seed ACCAAAG) and similar words dominate the
top ten regulatory words predicted. (B) Word cluster plot showing words in 3'UTRs ranked by differential expression, after miR-9 transfection.
Each dot represents a word, summarizing Z-scores, and enrichment specificity indices of the enrichment profiles of negatively correlated 6, 7 and
8mer words. Triangles annotate known seed sites of human miRNAs. Triangles with a black border show miR-9 seed sites. Words are clustered by
sequence similarity using the UPGMA algorithm and colored according to what motif (or cluster) they belong to (only some among top 100
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The enrichment profile plot provides a lot of detail for
individual words, but is also limited by the number of
words that can be effectively summarized in the same
plot, which may be an important factor in the discovery
phase of a motif analysis. For this purpose we developed
the word cluster plot (Figure 1B). This plot shows the
maximum enrichment score versus the ES index for all
words, and it displays word relationships found through
word similarity clustering. We found that this type of
plot produces a simple and yet informative summary for
miRNA perturbation experiments. For example, when
analyzing expression changes after miR-9 overexpression
in HeLa cells, the word with strongest enrichment in
3'UTRs of downregulated genes corresponds to the 7mer
seed site of miR-9 (Figure 1B). Several shifted variants of
the seed site also show enrichment in the plot highlight-
ing the preference for sites with a flanking adenosine.
Furthermore, the plot reveals significant enrichment for
certain T-rich motifs (including TTTTAAA, DNA-alphabet
was used with T instead of U), which were also reported in
our previous study [7]. The word cluster plot can therefore
provide a rich and unbiased summary for exploration of
regulatory motifs associated with gene expression changes.

cWords analysis of miRNA target sites in coding regions
of mRNAs

Analyses of target site efficacy in miRNA perturbation ex-
periments and target site evolutionary conservation have

shown that target sites in mRNA coding sequences (CDS)
exist but are much less effective and frequent compared to
sites in 3'UTRs [3], and for this reason target sites in
CDS are often not included in target prediction databases
and likewise frequently ignored in functional analysis.
However, miRNA target sites in CDS may be more im-
portant for specific miRNAs ([19]) or under certain con-
ditions, and we explored if cWords could be used as
a method to evaluate the efficacy of CDS target sites in
miRNA perturbation experiments. For analysis of CDS
motifs we used a tri-nucleotide background model to
correct for differences in codon usage between individ-
ual mRNAs. We found highly significant enrichment of
miRNA seed sites in CDS of downregulated mRNAs in
8 out of 11 miRNA overexpression experiments (6, 7 or
8mer seed significant and present in top ten words). In
Figure 2 we show word cluster plots for cWords analyses
of words enriched in CDS of downregulated genes follow-
ing overexpression of two different miRNAs. In Figure 2A
we see that miR-9 is significantly more enriched in
3'UTRs (Figure 1A), but the seed site signal definitely
stands out in CDS too. This suggests that miR-9 binding
in CDS contributed to the depression of expression levels
performed by miR-9, after it was overexpressed. Contrary,
miR-128 does not seem to be regulating its targets strongly
through binding in CDS (see Figure 2B), the highest
ranked seed site is the 7mer Al site ACTGTGA and
it ranked 1,521 (marked by black triangles in the word
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Figure 2 Enrichment of miR-9 and miR-128 seed sites in coding regions. (A) Word cluster plot shows enriched 6, 7 and 8mer words in
coding regions after miR-9 transfection. The word cluster plot is described in Figure 2B. (B) Word cluster plot shows enriched 6, 7 and 8mer
words in coding regions after miR-128 (7mer-m8 seed CACTGTG) transfection.

cluster plot) and the enrichment profile shows no particu-
lar over-enrichment in the most downregulated genes.
This illustrates that enrichment of seed site signal in CDS
varies more than in 3"UTRs. Enrichment analysis is a way
to elucidate such differences, which make way for under-
standing the biological context of the experiment. Data
used in the above is described in Supplementary methods
in Additional file 1.

cWords identifies siRNA off-target effects

Small interfering RNAs (siRNAs) are double-stranded
RNA molecules that can be designed to induce RNAi-
mediated cleavage of intended target mRNAs by full com-
plementarity of the siRNA guide strand to the mRNA.
However, transfected siRNAs have also been shown to
cause unwanted miRNA-like binding, termed off-target ef-
fects, where hundreds of mRNAs are destabilized by base
pairing to the seed region of the siRNA [7,20-24]. A study
has demonstrated that chemical modification of the siRNA
can effectively reduce such off-target effects [25]. In this
study ten different siRNAs were transfected in HeLa cells
in both an unmodified and modified form containing 2-O-
methyl modifications in position 2 of the guide strand
and positions 1 and 2 of the passenger strand. We used
cWords to analyze words enriched in 3" UTRs of genes
downregulated following transfection of the unmodified
and modified versions of three siRNAs designed to target
Pik3ca, Prkce, and Vhi. For all three siRNAs we found that
transfection of the unmodified siRNA resulted in strong en-
richment of seed words in downregulated mRNAs (Z-score
>14 and seed was ranked 1 of all 6, 7 and 8mers). This ef-
fect was notably reduced with the modified Prkce and Vil

siRNAs (Z-score <6 and seed was not among top 300
words). However, the modified Pik3ca siRNA also showed
fairly strong seed enrichment in downregulated mRNAs
(Z-score = 19.2, rank 1, Figure 3C), but weaker than the un-
modified siRNA, Figure 3B. This result suggests that the ef-
fect of 2-O-methyl modifications may be dependent on the
siRNA sequence and demonstrates how ¢Words can be a
useful tool to identify and diagnose off-target effects in
siRNA experiments. The data used in this case is described
in Supplementary methods in Additional file 1.

cWords analysis of endogenous miRNA binding sites in
HEK293 cells

Which mRNAs miRNAs target can also be explored
without the use of small RNA perturbations. One such
experimental technique is relative quantification of mRNAs
bound by Argonaute (AGO) proteins. To analyze if cWords
could be useful in analysis of such datasets, we used a
previously published dataset using HEK293 cells, measur-
ing mRNA abundance in immunoprecipitated (IP) AGO ri-
bonucleoprotein particles (RNPs) relative to background
mRNA expression [26]. By sorting mRNAs by relative
abundance in AGO IP RNPs, cWords was used to identify
3'UTR words significantly correlated with AGO mRNA
binding. Using previously published miRNA expression
data from HEK293 cells [27], we found that the top ten
words strongest correlated with AGO binding were all
complementary to seeds of the most abundant miRNAs in
HEK?293 cells (Figure 4). This result suggests that cWords
can also be a useful tool to study miRNA regulation in
assays other than miRNA perturbation experiments. Data



Rasmussen et al. Silence 2013, 4:2 Page 5 of 9
http://www.silencejournal.com/content/4/1/2

A
Pik3ca siRNA guide sequence 5’ uggcuuugaaucuuuggcc 3’
FIETT
Off-target 6mer seed target 3’ ccgaaa
B Unmodified Pik3ca siBNA C 2’-0O-methyl modified Pik3ca siRNA
-aaagcc caaagcc
L0 |
[V
+-aaagcca "-9.
o] -aagcca .
[aV]
L0l
o
3
N o]
LO-
O-
0 2000 4000 6000 0 2000 4000 6000
Gene index Gene index

Figure 3 Modified and unmodified siRNA off-target effects. c\Words word cluster plots showing 6, 7, and 8mer words enriched in 3'UTRs of
genes downregulated by siRNA off-target binding after transfection of an unmodified (B) and 2-O-methyl modified (C) siRNA targeting Pik3ca.
Enrichment of the 6mer seed (bases 2-7, AAAGCC) of the siRNA is highlighted in bold letters and seed region is illustrated in panel (A).
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Figure 4 Word enrichment of Argonaute bound mRNAs. (A) cWords word cluster plot showing 7mer 3'UTR words correlated with Argonaute
binding in HEK293 cells. The top ten words are annotated with identifiers of the most abundant (top 20) miRNAs in HEK293 cells when the word
and miRNA seed sequence (6 or 7mer) are complementary. (B) List of the 20 most abundant miRNAs in HEK293 cells, listing expression (relative
clone frequency) and seed site (position 2 to 8) for each miRNA.
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used is described in more detail in Supplementary methods
in Additional file 1.

Comparison to miReduce and Sylamer

The performance of cWords was compared to two other
methods, miReduce and Sylamer, on the task of identi-
fying seed site binding in mRNA 3'UTRs in a panel of
18 miRNA transfection experiments and one miRNA
inhibition.

miReduce uses a stepwise linear regression estimation
procedure and does not compute scores for all words of
a given length - only the most significant word among a
group of strongly correlated words will be included in
the model and summarized in the output. Words of dif-
ferent lengths cannot be compared by the Sylamer statis-
tic. Due to these issues we compare performance of the
three methods by computing enrichment for all 7mers in
each miRNA perturbation experiment. We report the rank
of the highest ranking word that is identical to the reverse
complement of the canonical A1 7mer seed (identity in
positions 2 to 7, with preferentially an A in position 1) or
the canonical m8 7mer seed (identity in positions 2 to 8)
of the transfected miRNA [3].

For miReduce, Sylamer and c¢Words, we found that
the top-ranked word corresponded to the seed site of
the perturbed miRNA in 13 of the 19 experiments [see
Table 2 in Additional file 1]. In six experiments the re-
sults diverged. For transfection of miR-133a, the top
word had an overlap of the six rightmost characters with
the six leftmost in the m8 7mer canonical seed site, for
all methods. This most likely reflects the biological reality
that miRNAs under certain conditions bind in atypical
ways. Another exception was in the inhibition of miR-21
[5], where Sylamer ranked a 7mer seed site as number 12
and all higher ranking words were not similar to the seed
site. In the other four experiments Sylamer did not rank a
7mer seed site as the first word.

This serves as a demonstration that the three methods
are able to find and discriminate the seed motif in datasets
where this is expected to be the strongest signal. In five
cases cWords performed better than Sylamer, but gener-
ally the performance of the three methods was very similar
under these benchmarking conditions. The parallel imple-
mentation is an advantage of c¢Words over the other
methods. Using four cores cWords finished an analysis on
average approximately five times faster than Sylamer and
approximately two times faster than miReduce and using
40 cores cWords was up to 20 times faster. In both cases,
Sylamer was run disabling approximations to not com-
promise precision. If a larger window size is used, Sylamer
is faster than the other methods. For more details on
which data was used in the comparison see Supplementary
methods in Additional file 1.
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Conclusions

We have presented cWords, which finds overrepresented
words in sets of DNA (or RNA) sequences. Contrary to
most other methods, it uses a sensitive statistics that takes
the individual sequence composition into account. cWords
can rank words across different word lengths and uses
clustering to group similar words. cWords outputs mul-
tiple summary plots and tables, which in combination pro-
vide both an overview and detailed information for in
depth analysis of the results.

cWords is designed for analysis of experiments in
which gene expression is measured after perturbation of
a miRNA. We have shown cWords successfully identifies
seed sites as the highest-ranking words in such experi-
ments. Furthermore, we have shown that cWords can
identify likely off-target effects of siRNAs mediated by
miRNA-like binding of 3"UTRs, and that binding motifs
of endogenous miRNAs can be identified from Argonaute
immunoprecipitation data.

We conducted a comparative study of cWords, miReduce
and Sylamer on published datasets from 19 miRNA trans-
fection and miRNA knockdown experiments. No single
method was notably better than the others, and overall the
performance of cWords, miReduce, and Sylamer was very
good for the specific application of identifying seed sites as
high-ranking motifs.

The word cluster plot of cWords provides a summary
and a way to associate words among the highest-ranking
words. An advantage of both miReduce and cWords is
that they can statistically evaluate and compare enrich-
ment for motifs of different lengths. Sylamer can only be
used for words of the same length in an analysis and re-
sults from analyses of different word lengths are not di-
rectly comparable. Sylamer is a fast tool, but actually this
is only the case when a large ‘window size’ is used, how-
ever, the speedup resulting from a large window size comes
at the expense of a less precise background model.

We have strived to make ¢Words user friendly, and it
offers the flexibility of a downloadable Open Source pro-
gram rich in features as well as the simplicity and ease
of use of the cWords web server.

Methods

cWords is an exact method, in which all words of a
given length are counted in the sequences. Based on
these word frequencies, enrichment scores (scores of
over-representation) are calculated for each word in each
sequence by a binomial model with a kth-order Markov
Model that corrects for composition bias in each
sequence. Enrichment scores are summarized and en-
richment profiles normalized in a Kolmogorov like sta-
tistics used for ranking and discriminating regulatory
words from non-regulatory.
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Scoring word overrepresentation in individual sequences
Whether a word is over-represented is tested in a bino-
mial model with a mono-, di- or tri-nucleotide back-
ground estimated for each individual sequence in the
following way. The background probability of the word
W in a given sequence s is approximated by a Markov
Model of order k:

Ly—k
P (W) = p(wy...wi) H T (Wi k| Wiy ooy Wiy Wiske1) (1)
i=1
Here u(w;...wy) is the frequency of the k first nucleo-
tides of W, [, is the length of W and the product is
the probability of the rest of the word given the dis-
tribution of (k + I)-mer words in the sequence [28].
n =1l + Iy + I is the number of possible matches in
sequence s, where Is is the length of s. Assuming that
words occur independently of one another, the prob-
ability of a word occurring m times or more can be
calculated from the binomial distribution function.

l

P (qzmln,p) = Z ( " )pi(l—p)”i (2)

i=m

where p = P(W) is the probability of observing m occur-
rences of the word W in a sequence (calculated by equa-
tion 1). In the original implementation of cWords the
expected frequency of a word in a sequence was estimated
by shuffling it. The above probability was calculated as the
fraction of shuffles where 7 or more instances of the word
would occur.

Evaluating word enrichment in a ranked list of sequences
We consider u sequences ranked according to degree
of differential expression in increasing order. For each
word we calculate a P value as described in equation
2. This gives

{P17p27"'>pu}

which follows the same ordering as the sequences.
From these we calculate log scores.

Is; = -In(p; + a)

where a small number, a, is added to regularize very

small probabilities (we use a = 10°). Using Is to de-
note the mean of the log-scores over all sequences,
we define a running sum of log-scores

ro = 0
ri =rii1 +Isi=Is, 1<i<u

In Figure 5 a line plot (the red line) of a running sum
for a specific word is shown along with running sums
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Sum of enrichment scores

3’'UTRs ordered by increasing fold change

Figure 5 Word enrichment profile on a background of random
permutations. The red line shows the running sum of log-scores
for a specific word and the random permutations of the scores form
a background distribution (grey lines). The x-axis represents gene
ranks, from most downregulated to most upregulated, the y-axis the
cumulative enrichment score.

for random permutations of the log-scores of the same
word (the grey lines). To quantify how much a word de-
viates from random, we calculate the absolute maximum
of the running sum,

D = maxg(rk)

In [7], the expected distribution of D was computed
from permutations of the log-scores. This approach is
computationally intensive, and here we provide an effi-
cient analytical solution. Suppose that we do random
permutations of the log-score set (as illustrated by the
grey lines in Figure 5). Since the running sum starts
and ends at 0, this corresponds to a Brownian bridge,
which is a one-dimensional Brownian Motion condi-
tioned on having the same origin and terminal
Y-coordinate ([29]). The theoretical distribution of the
absolute max of a Brownian bridge is known as the
two-sided Brownian Bridge max distribution. It is also
known as the Kolmogorov distribution in a slightly dif-
ferent form ([30,31]). A P value for some observed
value of D can be calculated from the distribution
function

D = n 2022 D
plys==)~1- e, 250,600 (3
(r2)- Y (e D0 nas0 @)

h——co

where o is the standard deviation of the distribution of
log-score Is; and ¢ is the number of genes in the ana-
lysis. The above formulation requires that the log-
score set has standard deviation 1. To evaluate D we
need to normalize with the standard deviation o of the
complete log-score set for the word in question. This is
very similar to the Kolmogorov-Smirnov statistics used
for the normalized enrichment scores in Gene Set
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Enrichment Analysis (supporting text of [18]). We de-
rived moment estimates for Y.

Er) =/ 2m(2)

Var(Y) = t%—E(Y)2

For all words to be comparable we can now calculate
the Kolmogorov like statistics

°-E(X)
/ Var(X)

X = oY is the observed enrichment score distribution,
Z is approximately normally distributed and these
Z-scores are used for ranking words in cWords.

Z:

Clustering words into motifs

Signals of regulatory sites typically surface as degenerate
motifs and not as single words. To also facilitate analysis
of motifs in cWords, the most significant words are clus-
tered into motifs. The algorithm developed for word
clustering is based on the UPGMA algorithm [32]. In
this implementation of UPGMA, association of two
words is inferred by ungapped local alignment. An align-
ment of two words is scored by the number of matches
minus the number of mismatches. The highest scoring
ungapped alignment is found and the score is normal-
ized dividing by the length of the shortest word to con-
trol for score biases when comparing words of different
lengths. This score is used for clustering.

Additional file

[ Additional file 1: Supplementary methods. ]

Abbreviations
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