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Short reportNaturally occurring variations in sequence length 
creates microRNA isoforms that differ in argonaute 
effector complex specificity
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Abstract
Background: Micro(mi)RNAs are short RNA sequences, ranging from 16 to 35 nucleotides (miRBase; http://
www.mirbase.org). The majority of the identified sequences are 21 or 22 nucleotides in length. Despite the range of 
sequence lengths for different miRNAs, individual miRNAs were thought to have a specific sequence of a particular 
length. A recent report describing a longer variant of a previously identified miRNA in Arabidopsis thaliana prompted 
this investigation for variations in the length of other miRNAs.

Results: In this paper, we demonstrate that a fifth of annotated A. thaliana miRNAs recorded in miRBase V.14 have 
stable miRNA isoforms that are one or two nucleotides longer than their respective recorded miRNA. Further, we 
demonstrate that miRNA isoforms are co-expressed and often show differential argonaute complex association. We 
postulate that these extensions are caused by differential cleavage of the parent precursor miRNA.

Conclusions: Our systematic analysis of A. thaliana miRNAs reveals that miRNA length isoforms are relatively common. 
This finding not only has implications for miRBase and miRNA annotation, but also extends to miRNA validation 
experiments and miRNA localization studies. Further, we predict that miRNA isoforms are present in other plant species 
also.

Background
Micro(mi)RNAs are important for gene regulation [1]
and for cell fate decisions during development [2]. Aber-
rant levels of miRNAs are seen in various disease states
[3-6]. miRNAs are transcribed from one strand of their
genomic loci into a primary miRNA transcript, which
folds into a characteristic bulge with stem-loop confor-
mation [7]. In plants, the primary transcript is cleaved by
a Dicer-like (DCL) RNase III enzyme, DCL1, into an
approximately 19 bp duplex with a two-nucleotide (nt)
overhang at either end [8]. Of the two strands forming the
duplex, one strand, designated miRNA*, is typically
degraded while the other is incorporated into the argo-
naute (AGO)-containing effector complex [9,10]. Co-
immunoprecipitation experiments demonstrate an
enrichment of miRNAs in AGO1, whereas AGO2 shows

depletion of miRNAs compared with non-immunopre-
cipitated samples [11].

The biological significance of sequence length hetero-
geneity has been recently identified for a mature miRNA
in Arabidopsis thaliana, in which ath-MIR168 is pro-
cessed as miRNAs of 21 and 22 nucleotides in length
from its two genomic loci. Vaucheret demonstrated that
reducing the amount of 21 nt miRNA greatly reduces
homeostasis and leads to developmental defects of the
plant, especially in environmentally challenging condi-
tions [12]. In general, it is appreciated that there is varia-
tion in the lengths of different miRNAs, as the mature
miRNAs listed in miRBase http://www.mirbase.org/ are
between 16 and 35 nucleotides in length [13]. In miRBase
V.14 there are 209 small RNA sequences identified for in
A. thaliana, of which 7%, 79%, 11% and 3% are 20, 21, 22
and 24 nt in length, respectively. The reason and function
for this heterogeneity is unclear and we are unaware of
any systematic investigation into non-uniform length dis-
tributions of individual miRNAs. Each annotated miRNA
in miRBase is a single defined sequence, and there are no

* Correspondence: rfahlman@ualberta.ca
1 Department of Biochemistry, School of Molecular and Systems Medicine, 
University of Alberta, Edmonton, T6G 2H7, Canada
Full list of author information is available at the end of the article
© 2010 Ebhardt et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20534119
http://www.mirbase.org
http://www.mirbase.org
http://www.mirbase.org/


Ebhardt et al. Silence 2010, 1:12
http://www.silencejournal.com/content/1/1/12

Page 2 of 6
details on the possibility of variable sequence length.
Sequence length variation may have been overlooked
previously, as small variations in the sequence length
might not have been thought to alter the function of indi-
vidual miRNAs, as they are directed to their targets by
base pairing.

Recent reports show however, that alterations in
miRNA length can potentially lead to dramatic effects on
miRNA function in organisms such as A. thaliana, in
which the identity of the first 5' nucleotide of the miRNA
is the major determinant for AGO protein association
[11,14]. Sequence-specific AGO association has been
characterized for most A. thaliana AGO complexes
[11,14,15]. Of these, AGO1 is the major AGO in the path-
way of miRNA post-transcriptional gene silencing [16-
19], whereas AGO4 functions in repeat-associated silenc-
ing of RNA accumulation and in regulating loci- specific
DNA methylation [20,21].

To investigate the frequency with which additional
nucleotides on the 5' ends of miRNAs are observed, we
queried several published A. thaliana small RNA datasets
collected by pyrophosphate and Solexa/Iillumina http://
www.illumina.com sequencing techniques. The approach
of analyzing small RNA sequencing datasets has previ-
ously proven successful for the identification of post-
transcriptional modifications in small RNAs [22-25].
Using similar methods, we queried all of the annotated
miRNAs from A. thaliana (miRBase V.14) for 5' exten-
sions of one to three nucleotides based on nucleotides
present in the pre-miRNA hairpin.

The datasets investigated were from three small RNA
sequencing studies including a small RNA transcriptome
that responds to changing phosphate levels [26], an RNA
analysis of the dicer (DCL2/DCL3/DCL4) triple mutant
[27], and a study on RNAs that are co-immunoprecipi-
tated with different AGO proteins [11]. In total, these
datasets contained 51,907,309 redundant small RNA
sequences.

Results
MiRNAs with SNE
For our in silico northern blot analysis, we queried each
dataset mentioned above with each miRNA sequence for
A. thaliana listed in miRBase V.14. In addition to the
recorded mature miRNA sequence, we extended each
mature miRNA at the 5' by 1, 2 and three nucleotide(s)
according to the hairpin sequence of the miRNA. To our
surprise, numerous miRNAs encompass a 5' single nucle-
otide extension (SNE) compared with the recorded
mature miRNA; for example, ath-MIR156h. The SNE of
ath-MIR156h is an additional 5' uridine/uracil (U) that is
not reported in the annotated mature miRNA sequence
[13,28,29], but is present in the parental pre-miRNA hair-
pin (Figure 1); the extended form of ath-MIR156h is

henceforth referred to as ath-MIR156h+1. Both ath-
MIR156h and ath-MIR156h+1 were present in small
RNA samples, independent of genetic background, envi-
ronmental effects, tissue types and sequencing technolo-
gies (see Table 1). A consistent cloning ratio of 7:3 (ath-
MIR156h+1:ath-MIR156h) was observed, despite large
variations in total abundance in different genetic back-
grounds and tissues. One exception to the 7:3 ratio was
found in small RNA cloning data originating from the
plant root, in which the two miRNAs were found in a 1:1
ratio (Table 1). The high frequency of occurrence of the
ath-MIR156h+1 sequence and the reproducibility
between datasets suggests a biological role for this long
variant of ath-MIR156h.

The distribution of ath-MIR156h+1 in various AGO
complexes differs from that of the parental ath-MIR156h
miRNA. AGO association was analyzed by determining
the frequencies with which ath-MIR156h and ath-
MIR156h+1 were identified in previously published data-
sets of miRNAs co-purified with AGO1, AGO2, AGO4
and AGO5 [11]. The current model for A. thaliana miR-
NAs predicts that ath-MIR156h should be mostly present
in AGO1-RISC complexes, as the miRNA possesses a 5' U
nucleotide. As predicted, over half of ath-MIR156h miR-
NAs reside in AGO1 complexes (54%), whereas the
remainder are split into AGO5 (31%) and AGO4 (15%)
effector complexes. No association with AGO2 was
found. However, in addition to a 10-fold increased fre-
quency of detection, ath-MIR156h+1 was detected
almost exclusively in AGO5 complexes (84.1%), with few
sequences detected in AGO1 (8%) and AGO4 (7%) data-
sets (Figure 2). This shift in association with AGOs was
not initially predicted, as ath-MIR156h+1 still has a 5' U,
nonetheless a shift in the frequency of AGO association
was observed.

MiRNAs with a double nucleotide extension
In our first example, we demonstrated that both ath-
MIR156h and ath-MIR156h+1 coexist within the plant at
constant ratios, with each miRNA isoforms showing pref-

Figure 1 Two mature micro(mi)RNA sequences derived from the 
ath-MIR156h pre-miRNA hairpin. The primary hairpin ath-MIR156h 
gives rise to two mature isoforms of ath-MIR156h, which differ by one 
nucleotide on the 5' terminus.
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erential AGO association. A second class of miRNAs
identified possess two additional 5' nucleotides. An
example of this class is ath-MIR775, which exists as both
ath-MIR775 and ath-MIR775+2; the latter has two addi-
tional 5' U nucleotides, with both of these nucleotides
present in the pre-miRNA hairpin. The parental miRNA
and ath-MIR775+2 were found at comparable frequen-
cies in all the datasets (1858 and 1587 occurrences,
respectively, in the AGO association database). Con-
versely, there was a negligible occurrence of the +1
miRNA. There are two possible explanations for this
exclusive occurrence of ath-MIR775 and ath-MIR775+2.
Cleavage events generating the mature miRNAs might
generate the two variable length miRNAs forms (0 and
+2) exclusively. Alternatively, all three lengths (0, +1 and
+2) might be generated, but with only the 0 and +2 forms
being stabilized and protected from degradation.

Analysis of the AGO associations of ath-MIR775 and
ath-MIR755+2 revealed a difference in the identity of

preferential AGO association. In more than 95% of
results, the ath-MIR775 sequence was found to be associ-
ated with AGO1, whereas the ath-MIR775+2 variant was
associated with AGO5 in nearly 70% of cases (Table 2).

Not all miRNAs are heterogeneously processed
Heterogeneity in mature miRNA lengths is not the rule,
as many do not exhibit detectable amounts of variable
length processing. Examples include ath-MIR168b which
was observed 86,634 times in the four different AGO
association datasets, whereas the ath-MIR168b+1
sequence was observed only 34 times. This observed fre-
quency is within the 3% insertion/deletion error rate of
pyrophosphate sequencing [30]. To date, there have been
no detailed analyses by Illumina or Solexa sequencing of
the frequency of insertion and deletion errors. The pres-
ence of both types of miRNAs (variable and homoge-
neous lengths) suggests that the variable lengths of some
miRNAs are not simply the result of 'ragged end' process-

Table 1: ath-MIR156h exists in two isoforms across seven datasets

ath-MIR156h+1, %, (n) ath-MIR156h, %, (n) Reference

Col-0 71.7 (2,445) 28.2 (962) [27]

SUr2a 69.9 (25,789) 30.0 (11,102) [27]

S234a 70.2 (24,472) 29.7 (10,802) [27]

Shoot +Pi 75.9 (328) 24.1 (104) [26]

Shoot -Pi 74.1 (413) 25.9 (144) [26]

Root -Pi 54.5 (54) 45.5 (45) [26]

Root +Pi 50.4 (70) 49.6 (71) [26]

Ath-MIR156h+1 has a single extra nucleotide on the 5' terminus compared with ath-MIR156h. Both isoforms co-exist across various genetic 
backgrounds and under various environmental conditions. WT (Col-0), ΔRDR2 (Sur2a) and DCL2/DCL3/DCL4-triple (S234a) mutant 
Arabidopsis thaliana [27], root and shoot small RNA transcriptomes under varying phosphate levels GEO: GSE17741 [26].

Figure 2 AGO association of ath-MIR156h isoforms. Mature miRNA ath-MIR156h resides mostly in the argonaute (AGO)1 effector complex, where-
as the majority of ath-MIR156h+1 resides in the AGO5 effector complex. The cloning ratios are given in percentage and absolute numbers. Statistical 
analysis on the AGO association frequencies using the Freeman-Halton extension of the Fisher exact probability test [33] revealed a highly significant 
result (P = 2.5 × 10-5) for the observed difference in AGO association. Data originated from the AGO association datasets [11].
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ing of all miRNAs, but are a specific process for a subset
of miRNAs.

Overall frequency of variable length miRNAs
In addition to the two examples outlined above, we sys-
tematically queried the entire ath-MIR dataset from miR-
Base V.14 in an in silico northern blot analysis. The
presence and frequency of each miRNA sequence,
including the +1, +2 and +3 extended miRNA forms, was
queried against the database (Figure 3; see Additional File
1). The sequence had to be present in a dataset at least six
times to be counted. Of the 209 annotated miRNAs in
miRBase, 166 were found in this analysis. Of the observed
miRNA sequences, 35 were found to have a single nucle-
otide addition, and four were observed had two nucle-
otides added. In total, nearly 20% of the annotated
miRNAs had additional 5' nucleotides. These 5' exten-
sions were not simply misannotated miRNAs, as isoforms
of various lengths co-existed. In addition to identifying
the miRNAs, we examined miRNAs exhibiting length
isoforms for changes in AGO association (see Additional
File 2).

In addition to our presented in silico data, previous
work using a genetic approach also suggests co-existence
of miRNA and miRNA+1 and the importance of their co-
expression. A recent report described and confirmed the
occurrence of a long (22 nt) form of ath-miR168 [12]. In
addition, experiments by Vaucheret and data from other
studies also reveals evidence of long miRNA variants; for
example, careful examination of previously published
miRNA northern blots found the presence of double
bands for some miRNAs, such as for ath-miR169, ath-
miR156 and ath-miR172 [31].

Conclusions
We have presented evidence arising from several small
RNA sequencing experiments that supports the co-exis-
tence of mature miRNAs and their 5' extended forms in
A. thaliana. Our results expand the previous genetic evi-
dence of variability in miRNA sequence length [12] by
revealing that nearly a fifth of miRNAs identified in A.
thaliana have additional nucleotide(s) on their 5' ends.
These 5' extended miRNAs are not simply misannotated,
as both longer and shorter forms of the miRNAs co-exist.
Additionally, we provide evidence that the 5' end varia-

tions can result in changes in the type of AGOs with
which these miRNA isoforms preferentially associate.
Differences in AGO associations suggest alterations in
the biological functioning of the different observed forms
of these miRNAs. These variable length miRNAs could
essentially be considered miRNA isoforms and should be
included in any annotation of miRNAs.

Methods
A Perl script mapped each mature miRNA to their
respective hairpin, recorded the hairpin sequence, then
appended one, two or three nucleotide(s) to the 5' of the
mature miRNA. For miRNA, the Perl script recorded five
sequences: hairpin, mature miRNA, +1 miRNA, +2
miRNA and +3 miRNA. All * sequences were ignored and
not used for analysis. Scripts are available online under

Figure 3 Frequency of extra 5' nucleotides. Several small Arabidop-
sis thaliana RNA datasets were analyzed for the occurrence of miRNAs 
with extra 5' nucleotides. From these datasets, 61% of the A. thaliana 
miRNAs listed in miRBase had no significant occurrence of extra nucle-
otides, 20% of the annotated miRNAs were not observed in the data-
sets at all, and 19% of miRNA had a significant proportion of either one 
(+1 MIR) or two (+2 MIR) nucleotides.

Table 2: Cloning frequencies of ath-MIR775 sequences in the argonaute (AGO) association datasets

AGO1 AGO2 AGO4 AGO5

ath-MIR775 1788 4 22 44

ath-MIR775+1 38 0 7 81

ath-MIR775+2 409 0 86 1092
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GPLV.2 http://www.bioinformatics.org/ebbie. The output
file in FASTA format was used for an in silico northern
blot, which probed all computer-generated small RNA
sequences in various datasets (GEO:GSE17741 [26],
GEO:GSE5343 [32] and ath-sbs [27]) using a modified
Ebbie-(mis)match-AGO v1 [22] script. To determine
AGO complex affiliation, the computer-generated small
RNAs were similarly compared against the AGO1,
AGO2, AGO4 and AGO5 small RNA datasets [11] using
Ebbie-(mis)match-AGO v2. Computation was performed
on an IBM system (Model x3850; IBM Computers,
Markham, ON, Canada).
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