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Abstract

This potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being
exploited as a new class of therapeutics for a variety of diseases. However, the efficient and safe delivery of siRNAs
into specific cell populations is still the principal challenge in the clinical development of RNAi therapeutics. With
the increasing enthusiasm for developing targeted delivery vehicles, nucleic acid-based aptamers targeting cell sur-
face proteins are being explored as promising delivery vehicles to target a distinct disease or tissue in a cell-type-
specific manner. The aptamer-based delivery of siRNAs can often enhance the therapeutic efficacy and reduce the
unwanted off-target effects of siRNAs. In particular, for RNA interference-based therapeutics, aptamers represent an
efficient agent for cell type-specific, systemic delivery of these oligonucleotides. In this review, we summarize
recent attractive developments in creatively using cell-internalizing aptamers to deliver siRNAs to target cells. The

optimization and improvement of aptamer-targeted siRNAs for clinical translation are further highlighted.

Introduction

RNA interference (RNAI) refers to the sequence-specific
cleavage of messenger RNA that follows the cellular
introduction of complementary, small interfering (si)
RNA duplexes 21 to 25 nt in length [1,2]. The develop-
ment of siRNA-based therapeutics has progressed
rapidly because of their specific and potent RNAI trig-
gering activity [3,4]. Although siRNAs offer several
advantages as potential new bio-drugs to treat various
diseases [4-6] including cancers and HIV infection [7],
the efficient delivery of siRNAs in vivo remains a crucial
challenge for achieving the desired RNAi effect in clini-
cal development [5,8,9].

In particular, a targeted intracellular delivery approach
for siRNAs to specific cell populations or tissues is
highly desirable for the safety and efficacy of RNAi-
based therapeutics. Targeted delivery of therapeutics is
an area of vigorous research, and numerous recent
investigations have described cell type-specific siRNA
delivery using different strategies. For example, siRNAs
have been covalently conjugated to a targeting ligand
(cholesterol [10], a.-tocopherol [11], lipophilic molecule
[12,13], short peptide and antibody [14,15], agonist
molecule [16] and nucleic acid-based aptamer [17-20]).
Alternatively, siRNAs have also been non-covalently
assembled with active recognition moieties and delivery
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vehicles as multifunctional targeting delivery systems,
such as folate conjugated dendrimer [21], folate-conju-
gated phage RNAs [22-24], transferrin modified poly-
mer/liposomes [25-28], peptide-based nanovectors
[29-32], cholesterol polymers [33], antibody-mediated
delivery formulations [34-48] and aptamer delivery plat-
forms [20,49-51]. The last holds great promise for clini-
cal translation. An ideal targeted delivery system
contains two essential elements: (i) a potent therapeutic
siRNA and (ii) a targeting vehicle that can selectively
recognize and effectively escort cargo into a particular
organ or cell. Indeed, a targeting ligand with high speci-
ficity and affinity to a cellular receptor is a major factor
in establishing a targeted siRNA delivery system.
Nucleic acid-based aptamers offer some important fea-
tures for targeted siRNA delivery [52-55]. Aptamers are
in vitro selected nucleic acids that assume specific and
stable three-dimensional shapes, thereby providing
highly specific, tight binding to targeted molecules
[56-58]. Given a specific molecular target, aptamers can
be identified from combinatorial libraries of nucleic
acids by a technique called systematic evolution of
ligands by exponential enrichment (SELEX) [57].
Despite the relative youth of the aptamer field, nucleic-
acid aptamers have extensively blossomed in various
fields ranging from diagnostics to therapeutics [59-61].
In particular, a new concept known as ‘escort aptamers’,
a term first used by Hicke and Stephens [52] suggests a
new facet of aptamer functionality: aptamers as drug-
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delivery devices. Aptamers, also described as nucleic
acid versions of antibodies, possess some unique charac-
teristics that derive from their nucleic acid composition
(for example, lack of immunogenicity in vivo, relatively
small physical size, straightforward chemical synthesis
that makes them amenable to backbone modification,
and rapid in vitro selection), making them more adapta-
ble for specifically delivering a variety of reagents to tar-
geted cells or tissues [59]. Moreover, precise site-specific
modifications facilitate engineering of aptamers for this
special purpose.

Currently, a number of aptamers targeting specific cell
surface receptors have been successfully adapted for the
targeted delivery of active drug substances both in vitro
and in vivo, including anti-cancer drugs [53,62-72], tox-
ins [73], enzymes [74], radionuclides [75], virus [76] and
siRNAs [17-20,22,49,77] (Table 1). The cargoes are
attached to the aptamers either through direct conjuga-
tion to the aptamer or through their assembly with
functionalized groups appended to the aptamer and car-
gos. As anticipated, aptamer-mediated targeted delivery
can enhance the therapeutic efficacy and reduce the
toxic effects of drugs. For example, Neufeld and collea-
gues successfully delivered the enzyme a-L-iduronidase
to the lysosomes of cells deficient in this enzyme using
aptamers targeted to the mouse transferrin receptor
(TfR) [74]. For RNAi-based therapeutics, several groups
have applied cell-internalizing aptamers to specifically
deliver siRNAs to target cells. The most established and
best characterized aptamers for siRNA delivery are the
prostate-specific membrane antigen (PSMA) aptamers
that bind with high affinity to PSMA [78]. Three sepa-
rate groups [18,49,77] have constructed distinct apta-
mer-siRNA conjugates for successful delivery of siRNAs
into tumor cells. Functional optimization of these conju-
gates has been carried out [17,77] (for example, trunca-
tion or multimerization of aptamers, enhanced loading
efficiency and stability of the siRNAs, and various apta-
mer-siRNA  linkage designs and conjugation
approaches), making aptamer-mediated RNAi therapeu-
tics a promising approach for future clinical translation.
There is increasing enthusiasm for generating new,
more potent cell-internalizing aptamers and for develop-
ing novel and rapid selection strategies (such as cell-
based SELEX [79-82] and automated SELEX worksta-
tions [83-86]) to exploit the clinical potential of apta-
mer-mediated delivery systems. This review focuses on
recent progress in aptamer-mediated siRNA delivery for
treatment of human diseases.

Development of cell-internalizing aptamers

Efficient development of new cell-type specific interna-
lizing aptamers presents a major challenge because of
the limited number of purified receptors that can be
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Table 1 Cell-internalizing aptamers for targeted delivery.

Cell-internalizing
aptamers

Cargoes and strategy for targeted delivery

RNA aptamers against
PSMA

1) SIRNA (non-covalently conjugate siRNA with
aptamer via a streptavidin connector [49];
aptamer-siRNA chimeras [17,18] and bivalent
aptamer-siRNA conjugates [77]).

2) Toxin [73] (chemically covalently conjugate
toxin with aptamer via SPDP reagent)

3) Nanoparticles and chemotherapeutic agents
[62-70] (cargoes such as dextran, docetaxel, Pt
(IV) and doxorubicin were encapsulated into
aptamer-coated nanoparticles; aptamer-Dox
physical conjugates via intercalation interaction)

RNA aptamers against  siRNA [25] (non-covalently assemble pRNA-
CD4 siRNA chimera with pRNA-aptamer chimera into
dimer or trimer)

SIRNA [19,20] (aptamer-siRNA chimeras; non-
covalently conjugate siRNA with aptamer via a
‘sticky bridge’)

RNA aptamers against
HIV gp120

RNA aptamers against
TN-C

Radionuclide and fluorescent agents (chemically
covalently conjugate *™Tc or fluorescent
agents with aptamers)

DNA aptamers against
PTK7

1) Doxorubicin [93] (chemically covalently
conjugate Dox with aptamer via an acid-labile
linkage)

2) Viral capsid [94] (chemically covalently
conjugate MS2 viral capsid with aptamer via an
oxidative coupling reaction)

DNA aptamers against Enzyme [74] (chemically covalently conjugate a-

TR L-iduronidase with aptamer via an oxidative
coupling reaction)

DNA aptamers against Liposomes and chemotherapeutic agents [71]
NCL (cisplatin was encapsulated into liposomes that
was non-covalently coated with aptamers)

DNA aptamers against
MUCT

Photodynamic therapy agents [72] (chemically
covalently conjugate chlorine e6 with aptamer
via EDC chemistry)

The RNA or DNA aptamers used as delivery vehicles for various cargoes via
different strategies are listed in the table.

EDC, (1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride); gp120,
glycoprotein 120 (envelope protein); MUC1, mucin protein (membrane-
associated glycoprotein); NCL, nucleolin (a bcl-2 mRNA binding protein);
pRNA, phage RNA; PSMA, prostate-specific membrane antigen; PTK7, protein
tyrosine kinase 7 (a transmembrane receptor); siRNA, small interfering RNA;
SPDP, N-[O-succinimdy]-3-(2-pyridyldithio) propionate; TfR, Transferrin receptor
(in mouse); TN-C, tenasin-C (a hexameric glycoprotein).

used for aptamer selection when the protein targets are
insoluble or the targets are functionally part of multi-
protein complexes. In these situations, traditional puri-
fied protein-based in vitro selection is not feasible.
Therefore, protocols based on live cell selection present
an alternative method for identifying aptamers against
either cell surface or cell internal proteins. In contrast
to the purified protein-based SELEX method, cell-based
SELEX [79] can be performed even with unknown tar-
gets or multiprotein complexes expressed on the cell
surface. Moreover, because intact living cells with many
native receptor proteins are used as targets during the
selection procedure, panels of new aptamers can be
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isolated from such screens [80]. Because this strategy
relies essentially on the differences between the target
cell population with particular features relative to the
control cell population used for counterselection, (for
example: defined phenotype, protein expression level,
different protein conformations), multiple binding spe-
cies that recognize only the target cells and not the con-
trol cells can be identified.

Despite these advantages, it should be noted that this
approach does not discriminate between dead cells with
reduced cell-membrane integrity and cells that are living
[60]. Because dead cells can yield a sequence-indepen-
dent binding of nucleic acids, cell-based SELEX can be
inefficient for aptamer selection [87]. During the process
of treating cells with the SELEX libraries, any damage to
fragile cells might incur the risk of selection failure.
Compared with the traditional SELEX methods using a
single target protein [88], cell-based SELEX usually
requires more selection cycles (>20) and longer proces-
sing times for efficient enrichment of an aptamer popu-
lation. Furthermore, increasing the number of selection
cycles often favors the enrichment of nonspecific or
unwanted species, which preferentially adapt to the
enzymatic amplification reactions rather than to the tar-
get binding. These facts therefore demonstrate that
aptamer selection involving living cells is a difficult task
and is still in its infancy. Although successful in indivi-
dual cases [80], further optimization of the selection
schemes is required to increase the general applicability.
For example, living and dead cells within a cultured cell
mixture could be discriminated and separated on the
basis of their different light-scattering characteristics
[87].

As reported recently, several cell-internalizing apta-
mers against cell surface biomarkers or receptors have
been successfully selected as targeting vehicles, through
either traditional recombinant protein-based SELEX or
cell-based SELEX strategies. To date, it has been
demonstrated that RNA aptamers against PSMA [78],
CD4 [89], HIV glycoprotein 120 [20,90,91] and tenas-
cin-C protein (TN-C) [92], and DNA aptamers against
protein tyrosine kinase-7 (PTK?7) [93,94], mouse Trans-
ferrin Receptor (TfR) [74], nucleolin (NCL) [71] and
mucin 1 (MUC1) [72], can be used for targeted delivery
purposes (Table 1). Despite these validated examples,
there is still a need for additional potent cell-internaliz-
ing aptamers to expand the diversity of targeting ligands
and promote their potential therapeutic applications.

Aptamer-mediated cell-type specific siRNA
delivery

Cell-internalizing aptamers are well suited to cell type-
or tissue-specific delivery of various cargoes because of
their high affinity and specificity, and their accessibility
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for backbone modifications. Approaches in which apta-
mers and siRNAs have been linked to achieve targeted
siRNA delivery and enhance RNAIi potency, and to
reduce unwanted side-effects have recently been
described. Therefore, this section will focus on the apta-
mer-mediated siRNA delivery approaches. So far, only
three RNA aptamers have been exploited for this pur-
pose; however, many other aptamers such as those listed
in Table 1 may also be useful for targeted siRNA
delivery.

Anti-PSMA RNA aptamer-mediated RNAi

PSMA is a well-characterized transmembrane protein,
which is strongly expressed in human prostate cancer
and the vascular endothelium [95,96]. Importantly,
PSMA is continually recycled from the plasma mem-
brane and is constitutively endocytosed in PSMA-posi-
tive LNCaP cells, making it an attractive portal to
deliver molecules intracellularly [66]. An anti-PSMA
monoclonal antibody was demonstrated to promote the
internalization rate. Using a purified fusion target pro-
tein containing a modified extracellular form of PSMA,
Lupold et al. previously selected from an RNA library
two 2’-fluoro (2’-F)-modified RNase-resistant RNA apta-
mers (A-9 and A-10) with low nanomolar affinity bind-
ing constants [78]. They also quantified the affinity of
each aptamer for PSMA by measuring the inhibition of
N-acetylated a-linked acidic dipeptidase (NAALADase)
activity. Aptamer A-9 inhibited PSMA noncompetitively
with an average K; of 2.1 nM, whereas aptamer A-10
inhibited competitively with an average K; of 11.9 nM.
Because these anti-PSMA aptamers can be internalized,
they have recently been engineered for cell-type specific
delivery of various cargoes [53,54,61], such as che-
motherapeutic agents, drug-encapsulated nanoparticles,
toxins, enzymes and siRNAs.

Three independent groups have successfully employed
the anti-PSMA RNA aptamers to specifically deliver siR-
NAs to target cells (Figure 1). In a proof of concept
study [49], Chu et al. recently reported successful non-
covalent conjugation of biotinylated anti-PSMA aptamer
(A-9) with biotinylated 27-mer lamin A/C or GAPDH
siRNAs via a modular streptavidin connector (Figure
la). To enhance siRNA release in the cytoplasm, a redu-
cible disulfide linker was designed between the sense
strand of siRNA and the biotin group. By using such a
streptavidin connector, two aptamers and two siRNAs
were elegantly assembled into a multivalent construct,
displaying effective PSMA receptor-mediated internali-
zation of aptamer-siRNAs and specific silencing of the
targeted transcripts in tumor cells.

A somewhat different approach was developed by
Giangrande and colleagues [18], in which a 2’-F-modi-
fied anti-PSMA aptamer (A-10) was covalently
appended to the sense strand of a 21-mer siRNA
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Figure 1 Anti-prostate-specific membrane antigen (PSMA) aptamer-mediated small interfering (si)RNA delivery. (a) Schematic of anti-
PSMA aptamer-streptavidin-siRNA conjugates. The 27-mer Dicer substrate RNA duplex and RNA aptamers were chemically conjugated with a
biotin group. Thus, two biotinylated siRNAs and two aptamers were non-covalently assembled via a streptavidin platform. (b) Schematic of the
first generation anti-PSMA aptamer-siRNA chimeras. The 2"-Fluoro-modified aptamer and siRNA sense strand were co-transcribed, followed by
annealing of the complementary siRNA antisense strand to complete the chimeric molecule. (c) Schematic of the optimized second generation
chimeras. Compared with the first generation chimeras, the aptamer portion of the chimera was truncated from 71 to 39 nucleotides, and the
sense and antisense strands of the siRNA portion were swapped. A 2 nucleotide (UU)-overhang and a polyethylene glycol tail were added to the
3-end of the guide strand and the 5-end of passenger strand, respectively.

portion, which in turn was hybridized to the 21-mer
antisense strand (Figure 1b). The resulting aptamer-
siRNA chimeric RNA was shown to be selectively inter-
nalized into cells expressing PSMA, and to effectively
knock down expression of the targeted the tumor survi-
val genes (PLK1 and BCL2) both in cell culture and in
vivo after intratumoral delivery. Because this delivery
system consists only of RNA components, it offers sev-
eral potential advantages as a therapeutic agent, includ-
ing lack of immunogenicity, the possibility for chemical
synthesis, and stabilizing modifications for in vivo
application.

Although aptamer-siRNA chimeras can be directly
administered to localized targets (for example, intratu-
moral delivery), systemic administration will be required
for many diseases. In general, greater therapeutic doses
are required for systemic administration, leading to
higher costs and side effects. Most recently, Giangrande

and colleagues addressed this issue by optimizing their
previous PSMA-siRNA chimeric design to achieve
enhanced inhibition of prostate cancer xenograft growth
via systemic administration (Figure 1c) [17]. First, the
aptamer portion of the PSMA A10-Plkl chimera was
truncated from 71 to 39 nucleotides, while still main-
taining high binding affinity. Most importantly, the trun-
cated version (containing the aptamer and sense strand
of the siRNA) comprising a total of 64 nucleotides
makes this amenable to chemical synthesis. Second, the
silencing potency was enhanced through structural mod-
ifications of the siRNA portion, enabling more efficient
incorporation of the siRNA by the cellular RNAi
machinery. The group then added a 2-nucleotide (UU)
overhang at the 3’ end of the siRNA duplex, but also
swapped the positions of the passenger and guide
strands of the siRNA. These modifications favor Dicer
recognition and loading of the guide strand (containing
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the two base 3’ overhang) into an RNA-induced silen-
cing complex (RISC), hence increasing the silencing
activity and specificity. By appending a polyethylene gly-
col moiety with molecular weight 20 kDa onto the
siRNA passenger, the circulating half-life of the chimeric
molecule was substantially increased and the bioavail-
ability was markedly improved, leading to prolonged
silencing in vivo. As a result of these efforts, the opti-
mized second-generation aptamer-siRNA chimeras (Fig-
ure 1c) resulted in pronounced regression of PSMA-
expressing tumors after systemic administration in athy-
mic mice. Additionally, the therapeutic dose of the new
chimera was dramatically reduced from 1 nmol on each
of 10 successive days (10 x 1 nmol) to 0.25 nmol in
every other day for a total of 10 days (5 x 0.25 nmol),
minimizing both the cost of treatment and the risk of
harmful side effects.

Other efforts to further refine aptamer-mediated
siRNA delivery and targeting efficiency are being
attempted through multimerization of the aptamer por-
tion. Previous studies with aptamers have revealed that
multivalent versions of aptamers can increase the
potency and antitumor response, and promote receptor
activation [97-100]. The multivalent aptamer-siRNA
construct has also been recently exploited for facilitating
receptor internalization, further improving the therapeu-
tic potential. Wullner et al. generated two different biva-
lent anti-PSMA aptamer-siRNA chimeras in which the
siRNAs targeted eukaryotic elongation factor 2 [77].
Their modifications included using the siRNA itself as a
linker to join the two aptamers or appending the siR-
NAs onto the 3’ ends of each aptamer. Compared with
the monovalent aptamer-siRNA chimeras (55% target
knockdown), these bivalent aptamer-siRNA constructs
resulted in an almost complete loss of PSMA-positive
cell viability, suggesting that bivalent aptamers definitely
promote internalization of chimeras. These efforts have
encouraged new thinking in the design of multiple apta-
mer-siRNA conjugates.

Anti-CD4 RNA aptamer-mediated RNAi

The CD4 receptor, a glycoprotein expressed on the sur-
face of certain subsets of T lymphocytes [101-103], is a
primary receptor used by HIV-1 to gain entry into host
T cells. It was previously reported that overexpressed
CD4 protein in T helper cells can be endocytosed [104].
Aptamers targeting CD4 were produced by immobilizing
soluble, recombinant CD4 antigen onto Sepharose
beads, allowing elution of unbound oligonucleotides and
retention of bound species, which were further amplified
for the next selection rounds [89]. Using this approach,
2’-F-modified RNA aptamers with high CD4 affinity
were identified. The ability of CD4 aptamers to block
functional T cell responses was tested using an allo-
geneic mixed lymphocyte reaction (MLR), a complex in
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vitro assay of T-cell recognition and responsiveness, in
which the comparative standard is the W3/25 CD4
monoclonal antibody, which binds to the same site as
the tested aptamer clones. Thus, the ability to block
MLR correlates with CD4 binding activity. These apta-
mers showed inhibitory effects in a CD4-specific man-
ner. This CD4-specific aptamer has been assembled into
a multifunctional nano-device for targeted delivery of
siRNAs in a T-cell line engineered to overexpress CD4
[22,50].

Recently, anti-CD4 RNA aptamers have been exploited
for targeted delivery of siRNAs [22,105]. The self-assem-
bling bacteriophage phi29 RNA (pRNA) was joined with
the anti-CD4 aptamer and allowed to form a nano-com-
plex with a pRNA-siRNA chimera. It was previously
demonstrated that pRNAs can be accurately assembled
through interlocking right- and left-hand loops into var-
ious oligomers (dimer, trimer, hexamer) ranging in size
from nanometers to micrometers [51,106]. The pRNA
itself can be fused with various agents (folate, aptamer,
siRNA, dye, antitumor drugs), while still allowing oligo-
merization of the pRNAs [107]. For example, as shown
in Figure 2, two pRNA molecules were respectively
fused with siRNAs (against survivin, green fluorescent
protein (GFP), Bcl2 antagonist of cell death (BAD) or
luciferase) and the anti-CD4 aptamer. Through the
interaction of right and left interlocking loops, the two
chimeric pRNAs could be precisely dimerized into a
stable nanovector of approximately 25 nm in diameter.
The nano-scale RNA dimer was also shown to be effec-
tively internalized into a CD4-overexpressing T cell line,
and the siRNAs consequently knocked down the expres-
sion levels of the targeted surviving or enhanced GFP
mRNAs. The direct correlation between CD4 expression
level and the internalization/silencing activity of the siR-
NAs also provided proof of anti-CD4 aptamer-mediated
cell-specific siRNA delivery. Similarly, a trimeric conju-
gate was engineered in the same way. Three chimeric
pRNA building blocks (one fused with the CD4 aptamer,
another with an siRNA and a third with a fluorescent
molecule) were assembled into a multifunctional nano-
device, which elicited siRNA-mediated target knock-
down and also provided molecular imaging via the
fluorescent dye. This self-assembling nano device may
improve the in vivo kinetics and enhance the therapeutic
efficacies of the delivered siRNAs.

Anti-gp120 RNA aptamer-mediated RNAi

The HIV-1-encoded gpl120 protein, a glycoprotein
envelope on the surface of HIV-1, plays an important
role in viral entry into CD4 cells [101,103]. The interac-
tion of gp120 and CD4 triggers HIV-1 entry and initi-
ates cell fusion [108-111]. Recently, a chimeric Fab
gp120 antibody fragment-protamine fusion was demon-
strated to facilitate receptor-specific siRNA uptake into
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cells expressing the HIV-1 gp120 envelope protein, sug-
gesting this protein as a new molecular target for recep-
tor-mediated siRNA delivery [40]. Several 2’-F modified
anti-HIV gp120 RNA aptamers have been isolated with
the use of a BIAcore biosensor system (Stevenage, Uni-
ted Kingdom) [90,91,112,113] or conventional nitrocel-
lulose filter binding of aptamers to recombinant
proteins [20]. The selected aptamers can specifically
bind to and be rapidly internalized into cells expressing
the HIV-1 envelope protein. In addition, the aptamers
alone can neutralize HIV-1 infectivity.

Recently, we used gp120 aptamer-siRNA chimeras for
cell type-specific delivery of siRNAs in cultured cells
and in a HIV-1 infected Rag-Hu mouse model. The gp-
120 aptamer (Figure 3a), was covalently linked to siR-
NAs that target the HIV-1 tat/rev common exon [19].
Because both the aptamer and the siRNA can inhibit
HIV-1 replication by respectively blocking the gp120-
CD4 receptor interaction and silencing HIV-1 tat/rev
expression, this novel anti-gp120 aptamer-siRNA chi-
mera possesses a dual inhibitory function. Treatment of
HIV-1-infected cells with these chimeras resulted in the
selective gp120-mediated internalization of the aptamer-
siRNA by endocytosis and the specific silencing of the
targeted mRNA transcript. Interestingly, a small change
in the length of the siRNA portion of the chimera from
21bp to 27bp resulted in enhanced silencing potency.
This was the result of Dicer processing of the 27-mer
from the aptamer and perhaps a more efficient handoff
of the processed siRNA to RISC. These results demon-
strated that HIV-1 gp120 expressed on the surface of
HIV-1-infected cells represents a unique target for apta-
mer-mediated siRNA delivery.

In a study by Zhou et al. [20], a ‘sticky bridge” strategy
was developed to non-covalently conjugate the aptamer
with various siRNAs (Figure 3b). In this design format,
one pair of complementary GC-rich sticky bridge
sequences was chemically attached to the 3’ end of the
aptamer. The complement to this sequence was attached
to one of the two siRNA, strands and the aptamer and
siRNA were joined by Watson-Crick base pairing. A
flexible three-carbon atom hinge (C3) was added as a
spacer between the adhesive (sticky) sequence and the
aptamer to allow spatial and structural flexibility. Impor-
tantly, this sticky bridge-based strategy can be used to
facilitate the effective interchange of different siRNAs
with a single aptamer, which is required to avert viral
resistance to the siRNA component. We combined three
different siRNAs with the gp120 aptamer: one against
the HIV-1 tat/rev gene, and two siRNAs targeting the
HIV host dependency factors CD4 and transportin 3,
respectively. The specific binding and internalization of
the aptamer-siRNA conjugates into gp120-expressing
cells was demonstrated by confocal microscopy, and the
aptamer-’sticky bridge’-siRNA combinations downregu-
lated targeted gene expression and suppressed HIV
replication in cell culture. Additionally, the aptamer-
siRNA combinations also served as dual-function inhibi-
tors, providing additive efficacy. These results demon-
strated the potential use of aptamer-siRNA conjugates
as a systemic, cell type-specific, siRNA cocktail delivery
system for anti-HIV-1 therapy.

Most recently, we tested the anti-HIV efficacy of these
aptamer-siRNA dual inhibitors in a humanized mouse
model (P. Neff et al., manuscript submitted to Science
Translational Medicine). In this model system, the
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Figure 3 Anti-HIV-1 gp120 aptamer-mediated small interfering (si)RNA delivery. (a) Schematic of the anti-HIV-1 gp120 aptamer-siRNA
chimeras. The anti-gp120 aptamer binds to gp120 and the 27-mer Dicer substrate RNA duplex targets a common exon of the HIV-1 tat/rev
transcript. Dicer processing results in 21-mer siRNAs that are incorporated into an RNA-induced silencing complex (RISC). (b) Schematic of the
anti-HIV gp120 aptamer-sticky bridge-siRNA conjugates. Either the antisense or the sense strand of the 27-mer Dicer substrate RNA duplex and
the aptamer were attached with to complementary ‘sticky’ sequences. After a simple annealing, they form stable base pairs.

humanized Rag2'/ 'yc'/ " mice (RAG-hu) were treated with
human CD34 hematopoietic progenitor cells, which
engraft and differentiate in a variety of human hemato-
poietic lineages. The mature T cells and monocytes
were infected with the HIV-1 NL4.3 virus. After 3
weeks of viral replication, the animals were injected
intravenously once weekly with the aptamer-siRNA con-
jugates. We observed a dramatic decrease in viral load
in all the treated animals, in most cases to undetectable
levels within a week after the intravenous administration
of the chimera. The suppression of viral load averaged
three logs of reduction relative to controls, and persisted
throughout and beyond the treatment period in several
of the animals. Most importantly, the aptamer-siRNA
treatment completely prevented T-cell depletion
mediated by viral infection. Therefore, the capacity to
achieve marked viral suppression in vivo together with
restoration of CD4 T cell levels using aptamer-siRNA
constructs should pave the way for implementing novel
therapeutic strategies for treating HIV disease. In parti-
cular, these dual-action constructs will be useful for
treatment of patients who do not respond to highly
active anti-retroviral therapy, the standard multi-drug
treatment that has proved so effective in battling AIDS.

Conclusions and perspectives

Since the first description of RNA interference triggered
by double-stranded RNA in 1998, RNAi has rapidly
become one of the methods of choice for gene function
studies and is also extensively being exploited for thera-
peutic applications. The successful use of siRNAs for
therapeutic purposes requires safe and efficient intracel-
lular delivery to specific cells and tissues. Nucleic acid-
based aptamers have many favorable characteristics,
including high binding sensitivity and specificity, small

size and ease of in vitro selection, making them very
attractive for a variety of uses in molecular targeting. In
this regard, nucleic acid aptamers targeting cell surface
proteins are emerging as a promising class of delivery
vehicles to target a particular cell population or tissue,
thus providing enhanced therapeutic potency and
reduced cellular toxicity.

To date, significant advances have been made to
develop cell-internalizing aptamers as a vehicle to deli-
ver siRNAs to diseased cells/tissues in a cell type-speci-
fic manner. Several examples discussed in this review
(for example, covalent aptamer-siRNA chimeras, non-
covalent aptamer-connector-siRNA conjugates and apta-
mer-functionalized nanovectors loaded with siRNAs),
provide complementary approaches for combining the
power of RNAi with aptamer technology, providing a
versatile technology platform for the treatment of var-
ious diseases.

Despite substantial progress in aptamer-mediated
siRNA delivery, two major efforts are still required for
clinical translation: (i) the development of more efficient
selection methods to generate new cell-internalizing
aptamers with high affinity and (ii) the development of
easier conjugation strategies for siRNA joining to
aptamers.
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